

An innovative paradigm for screening P-glycoproteins across the bloodbrain barrier using ex vivo insect testing

S SHAHEENA BEGUM¹,M. SREE HARNI²,DR.S.KUSUMAKUMARI³,
DR.M.SPURTHI MITHRA⁴,DR R SRIRAM⁵,E. HONEY⁶

Department of Pharmacology, Dr K.V Subba Reddy Institute of Pharmacy.

ABSTRACT: Because of its strong drug-exclusion features, the blood-brain barrier (BBB) makes pharmacologic treatment of many brain illnesses challenging. The chemical separation of the vertebrate brain is accomplished by means of the BBB's chemical isolation mechanisms, which are highly integrated, physically compact, and functionally overlapping. These include tasks that need cooperation between xenobiotic transporters that work in just one direction and tight diffusion junctions. Since these mechanisms are not easily simulated in ex vivo BBB models and have proven to be extremely challenging and costly to isolate in whole mouse models, our understanding of them has been hindered. The xenobiotic exclusion features seen in vertebrate vascular endothelium are preserved in the Drosophila melanogaster (Dm) humoral/CNS barrier, as shown here. We describe Mdr65, an ATP binding cassette (ABC) transporter in flies that is functionally analogous to xenobiotic BBB transporters in mammals. We demonstrate that by manipulating its levels selectively in the Dm BBB, the intrinsic sensitivity of the barrier to cytotoxic drugs may be altered. In addition, by recovering the Dm brain from chemical protection using human MDR1/Pgp, we show that Mdr65 and vertebrate ABC transporters have orthologous functions. These findings point to conserved molecular mechanisms and functionally similar anatomical regions that facilitate CNS selective drug partition as the ancient roots of CNS chemoprotection. Dm therefore provides a method that may be tested in an intact organism to study the BBB's physiological characteristics.

Introduction

To protect themselves against chemical attacks, vertebrates have a blood-brain barrier (BBB) that is physically distinct and is mostly designed into the single-cell layer of the vascular endothelium (VE). To stop tiny chemicals from freely moving between the humoral and CNS interstitial compartments, severe selection forces have integrated at least two distinct cell biology processes at this interface. (Zlokovic, 2008; Neuwelt et al., 2008; Abbott, 2005; Daneman and Barres, 2005). The unique lateral junction components of BBB VE cells, including as tight junctions and asymmetrically arranged ATP binding cassette (ABC) transporters, provide an obstacle for drug trafficking. The paracellular diffusion of charged molecules is facilitated by tight junctions, and the active expulsion of lipophilic molecules into the humoral space is carried out by asymmetri-cally arranged transporters (Lo"scher and Potschka, 2005b). Most xenobiotics are unable to affect vertebrate neural tissue because of these supplementary mechanisms working in tandem (Pardridge, 2005a,b). Despite assurances from both in vivo and in vitro BBB models, the

significance of these two factors, significant constraints impede development (Garberg et al., 2005; Schinkel et al., 1997; Nitta et al., 2003). To investigate CNS-specific chemoprotective physiology, an effective BBB model system should integrate molecular genetics, genomics, chemical biology, and integrative physiology. To do this, we looked to the fruit fly, Drosophila melanogaster (Dm), to see whether there are any invertebrate features of BBB physiology that might be replicated.

Similarly to vertebrates, insects have protective brain barriers; nevertheless, their anatomy is different (see Fig. 1). According to Treherne (1972), Carlson et al. (2000), and Stork et al. (2008), the humoral/CNS interface in Dm is topologically much simpler than the vertebrate BBB because of the Dm's open circulatory system and thin layer of glially produced epithelial cells that separates it from the central nervous system. Having said that, there are

several cellular similarities between the BBBs of insects and vertebrates. Specifically, the subperineural glia (SPG) provide a dense barrier to paracellular diffusion due to their complex lateralized homotypic connections, also known as pleated septate junctions (Edwards et al., 1993; Tepass and Hartenstein, 1994). According to Wu and Beitel (2004) and Banerjee et al. (2006), the proteins that form the tight junctions in vertebrates are quite similar to the Dm proteins that form the pleated septate junctions. Additionally, it has not been shown in insects that the dual nature of localized xenobiotic protection mechanisms exists; nonetheless, problems in Dm BBB function may be caused by disruption of the pleated septate junctions (Schwabe et al., 2005; Stork et al., 2008).

By proving that Mdr65, a homolog of the main ABC transporter at the human BBB, is present at the fly BBB, we establish that the two BBBs have structural and chemical similarities.

MDR1/Pgp, is required for normal chemical protection of the Dm brain. We show that the fruit fly (Dm) is uniquely suited for live assays of BBB function, making it useful for genetic screens and real-time assessment of chemical partition phenomena. We further show that Mdr65 is specifically localized at the humoral barrier of the Dm CNS, indicating that the SPG, like the verte- brate VE, possesses both tight diffusion barriers and active efflux transporters. Our findings show strong evolutionary conserva- tion of localized chemoprotective mechanisms and establish Dm as a tractable system for studying the regulatory mechanisms and integrated neuroprotective physiologies of the BBB in vivo.

Materials and Methods

Drosophila culture and genetics. Animals are grown on standard corn-meal molasses agar media at 25°C and 70% humidity in uncrowded bottles and collected 2 d before eclosion.

Intrahemolymph drug dosing. Dosing methods were similar to those described previously by Bainton et al. (2005). In short, intrahumoral fluor and drug doses were delivered by placing a microinjection needle between the posterior abdominal wall body segments of CO₂ anesthe- tized animals. Positive pressure was applied to the needle under direct visualization over 1-2 s to deliver an average volume of 100 nl dye per injection SD \pm 25 (range, 70 – 130 nl; data not shown). Animals were allowed to recover from injection in food vials at 25°C. In Figure 1, drugs and dyes were dosed using the following concentrations: Texas Red- dextran (TRD) at 25 mg/ml, FITC salt at 1 mg/ml, rhodamine 123 (Rho123) at 1.25 mg/ml, cyclosporin A (CsA) at 250 μM, and/or GF120918 [(N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2 isoquinolyl)- ethyl]-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide, hydro- chloride); GF] at 50 µM.

Retinal images acquisition. All retinal images were taken of animals under CO2 anesthesia using methods described by Bainton et al. (2005). In situ brain staining. Animals to be stained with C219 antibody were injected with 200 μM cyclosporine A in H₂O (C 1832l; Sigma) and 25 mg/ml 3 kDa Cascade blue dextran (D-7132; Invitrogen) and allowed to recover overnight. Cyclosporine A holds ABC B1 in an open conformation and improves C219 antibody staining in situ (Demeule et al., 1995; van Den Elsen et al., 1999). Flies are anesthetized with CO₂, decapitated, and the proboscis were removed. Whole heads are placed in fixative (3.7% paraformaldehyde in 1× PBS) for 15 min at room temperature. Central brains were removed from the cuticle in 1× PBS, carefully pre- serving brain surface structures, and washed with 1× PBS. Isolated brains were incubated in blocking buffer for 1h (1×PBS, 5% goat serum, and 4% Tween 20) and then probed in primary antibody overnight at 4°C. Brains were washed three times for 30 min in 1× PBS and probed with appropriate fluorescently labeled secondary antibodies for 45 min at room temperature (1:200; Invitrogen). Brains were washed three times for 45 min in 1× PBS and mounted on glass slides using DakoCytomation Fluorescent Mounting medium (Dako). Brains were mounted on glass slides

with ~40 μm posts and then covered with coverslips and sealed.

Whole animal pharmacokinetics. At 0, 1, 2, 4, 8, and 16 h, hemolymph- injected whole animals were quickly frozen on dry ice and then crushed in a Microfuge tube in 250 µl of 0.1% SDS and spun for 1 min at room temperature. Samples were diluted 10× in 0.1% SDS, vortexed, centrifuged, and 100 µl placed in 96-well fluorimeter plate wells. Fluorescent units were determined using a TECAN Spectrafluor Plus fluorescence reader or Spectra-Max M2 by Molecular Devices for FITC (excitation, 485 nm; emission, 535 nm) or rhodamine B (RhoB) (excitation, 535 nm; emission, 595 nm). All samples were measured in the linear range of a standard curve for each fluor.

Brain-specific dve capture. Rhodamine B (R6626; Sigma) was dissolved in H₂O at 2.5 mg/ml and brought to neutral pH. Sibling animals of above flies were decapitated, and brains were rapidly dissected (<90 s) from the cuticle, trachea, and fat body in 1× PBS. With single forceps tip, brains were washed once in 1× PBS and placed in a fluorimeter plate well containing 50 µl of 0.1% SDS. Brains were allowed to dissociate over 30 min, and the dye released from brain samples was measured using appropriate filters as above. Average values of dye retained in

were determined after subtracting the background from SDS alone. (Note that isolated brains from flour-

uninjected animals contain insig- nificant intrinsic fluor signal.) Statistical error was calculated based on the number of brains used for each sample, because the dynamic range of the signal varies depending on the fluor used. One brain per well can be used for RhoB, and brain-specific dye capture is depicted as relative fluorescence units using SD for statistical error (see Fig. 2 *B*). For the screen and rescue (see Figs. 2 *B*, 5*E*), RhoB data are shown as normalized values for ease of comparison across genotypes. BODIPY-prazosin (B- Prz) (B-7433; Invitrogen) was dissolved in 100% DMSO at 2 mM and mixed with dextrans in H₂O before injection for a final concentration of 1 mM B-Pz and 25 mg/ml 10 kDa Texas Red– dextran (D-1863; Invitro- gen). B-Prz provides a more limited dynamic range than RhoB; thus 10 brains were pooled per experimental replicate, and SEM was used for statistical error.

Drug efflux screen. P-element lines resident in the coding region of ABC B and C genes were collected from public sources [Bloomington Drosophila Stock Center (Indiana University, Bloomington, IN), Dro-sophila Genetic Resource Center (Kyoto Institute of Technology, Kyoto, Japan), and Szeged Drosophila Stock Centre (University of Szeged, Szeged, Hungary); see Flybase http://flybase.bio.indiana.edu/]. Lines tested were as follows: wild type (WT) (Canton S); a, c00522 (Mdr50); b, SZ4090 (CG1824); c, SZ EP3387 (CG4225); d, f03674 (CG3156); e, EY11060 (CG7955); f, SZ-3972 (Mdr49); g, KG08723 (Mdr65); h, EY13911 (CG5789); i, SZ430 (CG14709); j, EY09703 (CG4562); k, KG04612 (CG11898); l, KG08719 (CG7806); m, EY11919 (CG6214); n, f05095 (CG8799); o, KG04706 (CG 31793); p, e00744 (CG5772/cyo);

and **q**, f01338 (CG7627). Adult animals were injected with 1.25 mg/ml RhoB dye in water at pH 7.0. At 4 h, whole animals were frozen for whole animal analysis (above), whereas sibling animal brains were dissected and CNS fluorescent dye capture was determined (as above).

Detailed pharmacokinetic analysis. All animals are injected with a mix- ture of 1.25 mg/ml RhoB and 25 mg/ml 3 kDa FITC- dextran (D-3306; Invitrogen) (see Fig. 2 D).

Cell-based efflux assay. HEK293T cells (generously provided by Dr. Warner Greene, Gladstone Institute, University of California, San Fran-cisco, San Francisco, CA) were transfected with plasmid DNA using Lipofectamine 2000 reagent (Invitrogen) following the instructions of the manufacturer. At 24 h after transfection, cells were harvested and counted, and 3 × 10⁵ cells were incubated in 500 ng/ml rhodamine 123 (R 8004; Sigma) for 30 min in 5% CO₂ at 37°C. Intracellular fluorescence was measured on a FACScan flow cytometer (BD Biosciences) in channel

2 (FL2; l_{max} , 585 nm) on a logarithmic scale. Statistical analysis was accomplished using a paired t test (p < 0.05).

Analysis of PMdr65 insertion. Inverse PCR was performed on chromo- somal DNA (Sullivan et al., 2000). PCR bands from each end of the chromosome were cloned and sequenced confirming the location for PMdr65 (KG08723) in the eighth exon of the Mdr65 gene at nucleotide 6236199 on chromosome III. Primers for reverse transcription (RT)- PCR analysis were designed from the surrounding genomic sequence. Drosophila head RNA was isolated (Sullivan et al., 2000), and reverse transcription was accomplished with a unique RT primer. RT-PCR was done under standard conditions with 30 cycles, and products were run on 1% agarose gels and stained with ethidium bromide.

Genetic Resource Center) using pfx DNA polymerase (Invitrogen). The 5' PCR primer included an upstream CACC sequence to promote directional cloning into a pENTR/D-TOPO cloning vector (Invitrogen). Correct insertion orientation and primary nucleotide sequence (3906 bp) was confirmed by sequencing the entire open reading frame (ORF). A single amino acid change (G to D) was noted at amino acid 1190. The entire ORF was moved into a upstream activating sequence (UAS) controlled *Drosophila* Gateway construct, pTWG, containing a green fluorescent protein (GFP) tag at the C terminus by *in vitro* recombination and confirmed by restriction digestion (*Drosophila* Gateway Cloning Collection, Carnegie Institution, Baltimore, MD). Standard transgenic methods were used to make stable UAS inducible transgenic transposon insertions into the *Dm* genome (Sullivan et al., 2000).

Gene cloning of MDR1/Pgp. Human MDR1/Pgp was PCR amplified from a pcDNA-5-FRT construct furnished by the Kroetz laboratory us- ing the same methodology as above for Mdr65. Correct insertion orientation and primary nucleotide (3840 bp) sequences for MDR1/Pgp was confirmed by sequencing the entire ORF. The MDR1/Pgp pENTR/D- TOPO construct was then moved into the pTW vector for transgenic expression in *Dm* (*Drosophila* Gateway Cloning Collection). As above, standard transgenic methods were used to make stable UAS inducible transgenic transposon insertions into the *Dm* genome.

Western analysis. Western analysis was accomplished with standard 10% PAGE gels blotted onto polyvinylidene difluoride membranes (GE Healthcare). Primary antibody hybridization using 1:100 C219 MDR1/Pgp Antibody (Invitrogen), 1:500 GFP monoclonal antibody (Invitrogen), or 1:50 affinity-purified Moody Beta antibody (Bainton et al., 2005) was done using a Bio-Rad Mini-gel Western protocol. Visualization of bands was

accomplished by incubation with anti-rabbit alkaline phosphatase-conjugated secondary antibody and ECL solution. Mdr65– GFP/SPG–GAL4 double-homozygote animals ($G \times M/G \times M$) express approximately eight times as much Mdr65-GFP as double-heterozygotes ($G \times M$) compared by serial dilutions into whole animal crude extracts (data not shown).

Confocal analysis. Confocal images are acquired using a Zeiss LSM-510 as described previously (Bainton et al., 2005). Laser and detector gain settings for fluorescent background noise were defined using brains with no primary antibody exposure and/or *PMdr65* (an *Mdr65* loss-of- function allele). At the coverslip interface, the brain was slightly pressed against the glass providing a flat brain interface with widths of 10 –20 μm. This preparation provides highly reproducible patterns of Moody stain- ing that allows for proper anatomic identification of dorsoventral brain orientation and overall quality of the brain preparation. Because the BBB is a continuous surface around the *Dm* CNS, the depth of confocality can be changed to find a cross-sectional image. To observe a tangential section, we follow the edge of the brain to its greatest extent laterally. This provides the highest resolution of the apical-basal polarization of the BBB epithelia.

Cytotoxicity assays. Vinblastine (VB) (V1377; Sigma) doses were ti-trated to sustain animal viability (defined by a lethal dose <5% after overnight exposure). Control animals were injected with 3 kDa FITC— dextran. Experimental conditions included 3.3 and 6.6 mM vinblastine in water. Brains were dissected from live animals after overnight incubation, with two brains per well for each fluorescent measurement to increase measured signal.

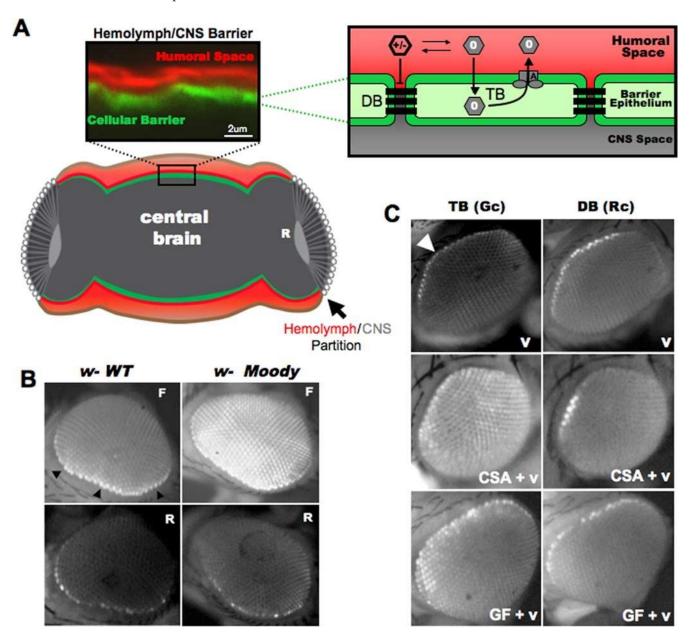
Results

Live assessment of chemical partition at the Dm retina

To study drug transport physiology *in vivo*, we inject fluorescent small molecules into the hemolymph of *white* 1118 null (w^-) flies and visualize drug distribution throughout the animal by follow- ing fluorescent signal (Bainton et al., 2005). Because the Dm CNS includes the BBB-protected retinal space (Fig. 1 A), xenobiotic penetration of the barrier can be observed in live flies by looking through the cornea at chemical fluors trapped in the retina (Bain- ton et al., 2005; Banerjee et al., 2008). The *white* mutation en- hances the visibility of the injected dyes by eliminating dark ret- inal pigments that block scattered light. In previous work, we discovered Moody, a G-protein-coupled receptor (GPCR) that localizes to and regulates paracellular border function of the SPG (Daneman and Barres, 2005; Schwabe et al., 2005). Numerous highly charged fluorescent dyes or large molecular weight (MW) dextrans injected into the hemolymph compartment are ex- cluded from the retina of w^- WT over hours and days but infiltrate w^- moody null flies within a few minutes of injection (data not shown). In the example shown in Figure 1 B, at 4 h after injection, FITC salt (F) is excluded from the retina of live w^- WT animals (top, left). Note the distinct high-contrast fluorescent signal at the edge of the cornea (black triangles) demarcating the hemolymph and CNS compartments (also shown in schematic

image, Fig. 1 A, black arrow). The hemolymph exclusion line (HEL) is a consequence of differential signal intensity between hemolymph passing near the outer segments of the retina (i.e., the humoral space) and signal that originates from inside the retina (i.e., CNS space) (Fig. 1 A, arrow). In an FITC-injected w^- moody null animal, no HEL is observed, because FITC dye infil- trates the retina (top, right) and the central brain (data not shown). In contrast, many lipophilic dyes that are good ABC transporter substrates, such as Rho123, are excluded from the retina in both w^- WT and w^- moody null flies (Fig. 1 B, bottom). Thus, Rho123 partitioning is not impaired by a significant defect in paracellular barrier function, suggesting that Dm has additional mechanisms for isolating the CNS.

Because Rho123 is an efficient substrate for the vertebrate ABC transporter MDR1/Pgp (Nag, 2003; Lo"scher and Potschka, 2005b), we tested whether its exclusion by the Dm BBB is affected by known MDR1/Pgp transport inhibitors. When Rho123 is coinjected into w^- WT flies with CsA or GF (Lo"scher and Potschka, 2005b), increased penetration of the retina by Rho123 is observed, with CsA having a stronger effect than GF (Fig. 1C, left column, middle and bottom). Neither transport inhibitor breaks down the paracellular diffusion barrier, because 10 kDa TRD is still completely excluded from the CNS (Fig. 1C, right column). Thus, active transport appears to be necessary for maintenance of the Dm BBB and is functionally separable from the paracellular diffusion barrier.


A screen for BBB active transporters The effect of CsA and GF on Rho123 partition suggested that one or more ABC transporters play a role in maintaining chemical isolation at the Dm humoral/CNS barrier. This assertion is sup- ported by the exhaustive literature demonstrating that ABC transporters are highly expressed at many chemoprotective inter- faces, including the BBB in vertebrates, and that altering their function, whether chemically or genetically, can affect xenobiotic partition (Lo"scher and Potschka, 2005b; Sarkadi et al., 2006). In mammals, ABC genes occur in seven families (A through G), with a total of \sim 50 genes in humans. Interestingly, although ABC gene sequence and subfamilies are highly conserved from flies to humans, the specific roles of most genes are unknown (Gerrard et al., 1993; Dean et al., 2001). The major xenobiotic transporter classes are the B (n = 11), C (n = 12), and G (n = 5) families. Unfortunately, because the best studies

of ABC transporters *in vitro* and in the animal are limited to a few genes, it is not known whether they function as a complimentary system (i.e., posses chemical redundancy or compensation) or operate in chemical isolation. However, single gene loss of function can have a profound effect on chemical partition, because ABC B1 (MDR1/Pgp), ABC C1 (MRP1), and ABC G2 (BCRP) knock-out mice demonstrate large defects in drug partition at the BBB when challenged with xenobiotics (Sarkadi et al., 2006). Hence, it is possible to consider experiments that phenocopy functional physiology of ABC transporters at the *Dm* BBB. Unfortunately, identifying such transporters purely by comparing primary sequence across phyla is not possible; thus, we focused our efforts on a reverse genetic screen of mutant alleles of *Dm* ABC genes.

Sequence comparison between human ABC genes and the

Dm genome identified 22 highly homologous genes (B, n = 10; C, n = 12; http://blast.ncbi.nlm.nih.gov/Blast.cgi). Using fly database (http://flybase.bio.indiana.edu) searches, we identified P-element lines that interrupted the coding region for 17 (7 class B and 10 class C) of the 22 ABC transporter genes (see Materials and Methods). All P-element lines were *white* plus

Figure 1. Visualization of drug transport *in vivo* through the *Dm* retina. *A*, A diagram cross section of a *Dm* fly head depicts different biologic spaces associated with drug partition. The CNS (gray, central brain and retina) is separated from the hemolymph (red) by an ensheathing BBB glia, the diffusion-tight SPG (green line). A confocal microscope cross-sectional image (taken in the location delineated by the black box below the image) shows the protective cellular interface (green, BBB-specific GFP) that the *Drosophila* brain presents to the humoral space [red, 10 kDa dextran (for additional explanation, see Fig. 3)]. A xenobiotic (i.e., drug) interacts with protective barriers in twoways (diagram at right). Charged molecules (solid black hexagons) are excluded by the boundary function of lipid bilayers, very low rates of

endocytosis, and tight diffusion barriers (DB) provided by special lateral-border junctional complexes (black boxes) of barrier epithelium. Small uncharged molecules (gray hexagons) pass easily through lipid bilayers (green), but active efflux transporters (A) movethembackintothehumoralspacecreatinganactivetransportbarrier (TB). Because drugs in aqueous solution are often in equilibrium between charged and uncharged forms, a true drug barrier must maintain both properties simultaneously to manifest xenobiotic exclusion. B, Hemolymph (i.e., humoral) injection of chemical fluors allows live functional assessment of BBB function. FITC salt (F) is excluded from the retina of live w WT animals (top left). Black arrowheads point to the HEL, which is also shown schematically in the brain-section diagram above in A. FITC leaks into the retina of w moody null animals (top right). Rho123 (R) is excluded from the retina of w WT flies (bottom left) and from w moody null animals (bottom right). C, Simultaneous assessment of diffusion barrier and efflux transport barrier function by reporter coinjection in w WT at 4 h after injection. Rho123 demarcates the transport barrier HEL in the green channel (white triangle, TB-Gc) at top with vehicle (V), and 10 kDa Texas Red dextran demarcates the diffusion barrier HEL in the red channel (DB-Rc). Addition of MDR1/Pgp transport inhibitors, CsA and GF, demonstrate maintenance of the diffusion barrier (right column) in the presence of a disrupted transport barrier (left column, middle and bottom).

 (w^+) , precluding use of the live visual assay for small-molecule penetration screening. Therefore, dye penetration of the BBB was assessed by dissecting brain tissue from fluor-injected an- imals and directly measuring CNS dye capture (see Materials and Methods). The lipophilic dye Rhodamine B (RhoB) used in the screen is a substrate for ABC transporters and is highly fluorescent in aqueous environments. RhoB is also well toler-ated by flies and has a bioelimination half-life of 4 h, which is practical for quantitative assays of brain efflux (Fig. 2 A). RhoB was injected into the hemolymph of 20 individuals from each P-element line. At 4 h after injection, fluor content was deter- mined for either dissected brain tissue alone or for whole an- imals (Fig. 2 B). Whole animal fluor content showed little or no significant difference among mutant lines (black bars).

However, one line (g) demonstrated a high relative brain-specific (colored bars) RhoB accumulation.

This line, referred to here as *PMdr65*, contains a P-insertion on the third chro- mosome in a previously described putative ABC transporter gene, *Mdr65* (Wu et al., 1991; Bosch et al., 1996). The BBB pheno- type of *PMdr65* is retained after a five- generation outcross. PCR analysis of *PMdr65* genomic DNA demonstrates transposon sequences resident in the eighth exon of the *Mdr65* coding region, and a precise excision of the P-element re- stores WT drug transport (data not shown). RT-PCR analysis of *PMdr65* RNA demonstrates an altered transcript consistent with P sequences disrupting the putative *Mdr65* transporter ORF (supplemental Fig. 1 A, available at www.jneurosci.org as supplemental material). This evidence indicates that increased brain-specific re- tention of RhoB results from an alteration of *Mdr65* gene expression. *Mdr65* exhibits 42% sequence identity to *MDR1/Pgp*, the major ABC transporter found at the mam- malian BBB, and the two proteins are pre- dicted to have similar secondary structure (data not shown).

To confirm that *Mdr65* encodes an ABC transporter with xenobiotic efflux properties similar to *MDR1/Pgp*, we cloned the *Mdr65* ORF by PCR, added a C-terminal GFP tag, and tested transport function of the resulting Mdr65–GFP fu- sion in transiently transfected HEK cells (Fig. 2C). Mock transfected cells lack suf- ficient endogenous ABC transporters and accumulate Rho123 when placed in dye- containing media. In contrast, cells ex-

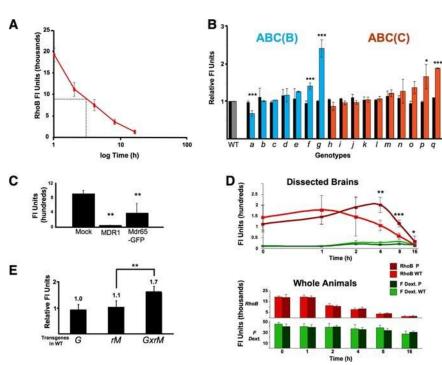


Figure 2. Mdr65 promotes efflux of xenobiotics from the brain. A, RhoB bioelimination from whole animals as a function of time afterhemolymph injection. B, Intragenic P-element insertions in ABCBand Cgenes(a-q), collected from public sources, are normalized to Canton S (WT) responses in xenobiotic efflux assays (see Materials and Methods). Flies injected with 100 nl of RhoB (1.25 mg/ml) are assayed at 4 h for whole-body content (black bars) and brain-specific content (colored bars). Values represent the normalized mean \pm percentage SEM for whole-body fluor content (n = 3 from groups of 5 crushed whole flies) or for brain fluor content (n = 3 for 6 individual brains). Asterisks denote significant differences from WT control (*p < 0.05, **p < 0.01,

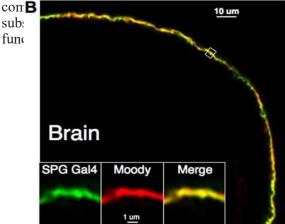
***p < 0.001, using a two-tailed t test). C, Mean values of Rho123 accumulation in transiently transfected HEK cells are shown as mean \pm SD (**p < 0.01 using two-tailed t test). D, Transport and diffusion barrier characteristics of PMdr65 are compared directly with WT as a function of time. Animals are coinjected with 1.25 mg/ml RhoB and 3 kDa FITC- dextran (red, RhoB; green, FITC- dextran) and brain-specific or body-specific values are means \pm SD (n = 6 - 8 for individual bodies or brains). Significant differences in brain-specific dye capture of RhoB are seen at 4, 8, and 16 h (*p < 0.05, **p < 0.01, ***p < 0.001, using a one-tailed t test). Brain accumulation of 3 kDa FITC- dextran is near background at all time points (green lines). Bottom, Whole animal fluor content for both RhoB (red bars) or 3 kDa FITC- dextran (green bars) are mean \pm SD values (p values as in q). E, UAS-inducible Mdr65 RNAi [rM or VDRC ID 9019 (Dietzl et al., 2007)] is crossed to an SPG-specific GAL4 driver (G), and $G \times M$ progeny are compared with parental lines. Mean brain-specific RhoB fluor content at 4h is shown \pm SD (p values same as p0).

diffusion barrier. Indeed, the PMdr65 BBB was indistinguish-

pressing either Mc65-GFP or mammalian MDR1/Pgp accumulate significantly less Rho123, indicating efficient active transport of the dye out of the cytoplasm (Fig. 2C).

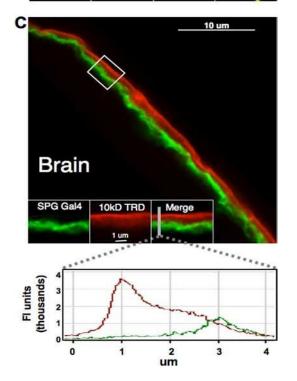
Mdr65 loss-of-function animals are deficient in brain-specific xenobiotic efflux

To determine whether the increased brain accumulation of RhoB in Mdr65 mutants is attributable specifically to effects on the active transport barrier, we coinjected WT and PMdr65 flies with RhoB and 3 kDa FITC- dextran, a large MW dye conjugate that cannot be effluxed by ABC transporters. The total amount of each dye in whole


anirA 10 um the con and (dat both dist Fina **Brain** Mdi (dat Nrv Gal4 leve Moody Merge con Mdı RN. (dat

sub

func


rious times after injection. As expected, RhoB is eliminated from t for days or weeks (Fig. 2 D, and data not shown). Whole animal oB are not affected by the *PMdr65* mutation (Fig. 2 D, bot-tom), revealed no gross differences in fluor distribution in the animal ion of 3 kDa FITC- dextran remained near background levels in n lines), indicating that the *Mdr65* mutation does not significantly to all highly charged small molecules tested (data not shown). similar between fly lines at early time points, show- ing that the n- etration by RhoB, which was confirmed by live retinal assays on, however, *PMdr65* flies exhibited significantly higher brain utant flies had markedly reduced RhoB efflux from the brain. To ized xenobiotic transport function, we produced an SPG-specific GAL4 driver (Fig. 3) to an inducible *Mdr65*- specific interference BBB-specific Mdr65 reduction by methods discussed in Figure 5 ese animals are deficient in brain-specific RhoB transport when ngs parallel the brain-specific pharmacokinetics of MDR1/Pgp

monstrating that the con-tribution of Mdr65 to BBB drug efflux in vertebrates. (Schinkel, 1997; Schinkel et al., 1997).

Evaluating barrier physiology at the subperineural glia in adult Drosophila

Previously, the subperineural glia was identified as the potent CNS diffusion barrier layer in EM studies in other insects and in *Drosophila* larva (Treherne, 1972; Carlson et al., 2000; Stork et al., 2008). In recent work, we showed that a novel orphan GPCR, Moody, is expressed exclusively in the SPG layer of larva brains and nerves (Bainton et al., 2005). To correlate in vivo assays at the retina (Fig. 1) with functional changes at the barrier, we devel- oped methods to simultaneously identify the anatomic localiza- tion and physiologic properties of the humoral/CNS interface in *Dm* adults. Fixation is performed in situ to preserve BBB anatomy susceptible to damage during dissection of the exoskeleton (see Materials and Methods). accomplish this, the proboscis is removed to allow access of fixative into the brain. Although the BBB anatomy around parts of the central brain is distorted by this procedure, subsequent dissections and mountings enable repro- ducible visualization of the BBB in the area of the lobular plate, the optic chiasm, and retina (Fig. 1). The retina is often removed during mounting for better position of the brain on the slide. By costaining brains expressing Nrv2-GAL4, a gene whose expres- sion is limited to neurons and cortical glia (Pereanu et al., 2005), we show that Moody antibody staining in adults is peripheral to the CNS (Fig. 3A). Higher-resolution images confirm that the Moody GPCR is superficial to cortical glia, discrete to the SPG, and thus specifically demarcates the *Dm* BBB border *in situ* (Fig. 3A, inset).

APPLIED SCIENCE LETTER

Vol. 5, No.4, Oct (2023), pp.04-22

A hallmark of BBB physiology is the compact cellular localiza- tion of chemoprotective systems that include tight junctional barriers and ABC transporters (Fig. 1 A). To understand how specific gene expression at the BBB interface generates cell- autonomous physiologic function, we used methods to control gene expression in the SPG while concurrently evaluating physi- ologic outcomes at that interface. Targeted gene expression is achieved using the two transgene method (Brand and Perrimon, 1993). The transcriptional activator GAL4 was put under the control of the Moody transcriptional enhancer to produce a highly specific GAL4 expression pattern specific to the subperi- neural glia layer (SPG-GAL4) (Stork et al., 2008). Moody has two isoforms, α and β , that completely colocalize (Bainton et al., 2005). SPG-GAL4-specific gene expression of a GFP-tagged Moody α construct coincides perfectly with Moody β antibody staining (Fig. 3B, inset), verifying that gene expression can be directed exclusively to the SPG cell layer in adult flies. This ex- pression specificity confirms that Mdr65 RNAi-induced loss of function in the SPG is targeting a BBB localized chemoprotective function of Mdr65 (Fig. 2 *E*).

4

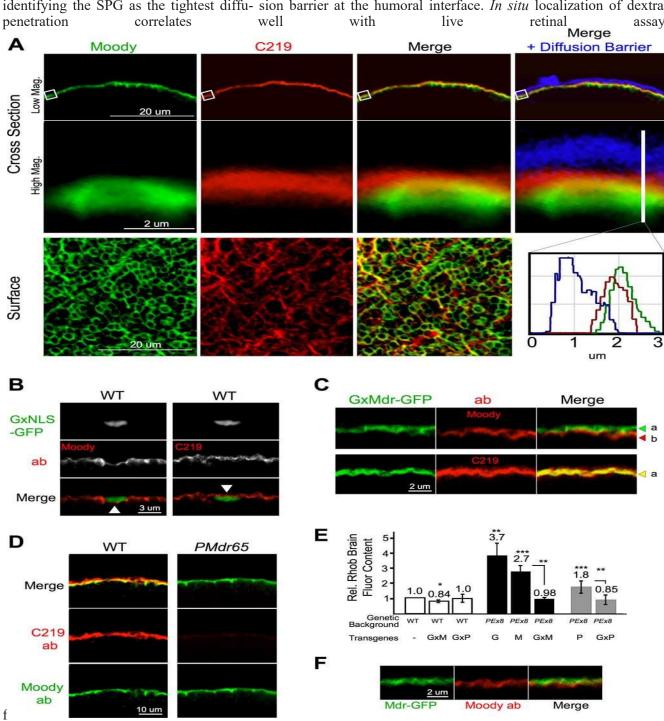



Figure 4. Mdr65 promotes drug exclusion at the SPG. A, WT and Ex8 are coinjected with 10 kDa Texas Red dextran (red bars) and 1 mM B-Prz (green bars). The solid bracket line compares normalized mean ± SEM values (n = 2 with 10 brains per value) of w WT and PEx8 (w—mdr65 null) brain-specific fluor content (4 h after injection). B, Live retinal images of B-Prz distribution [green channel (Gc)] show marked changes in small-molecule distribution in PEx8 (loss of HEL) compared with w WT (with HEL, triangle), whereas high MW dextrans [red channel (Rc)] retain normal HELs in both lines. C, Precise anatomic position of the CNS—humoral interface is shown by confocal cross-sectional images of the posterior medulla in fixed and dissected brains. In w WT brains, the intact diffusion barrier, demarcated by the extent of penetration of 10 kDa TRD (red), is seen as a red line at the edge of the brain parenchyma (merge and Rc). B-Prz infiltrates the brain of PEx8 animals (compare top, w WT and PEx8). By separating the fluorescence channels a second high-contrast line in the Gc emerges in w WT only. (White boxes demark the localization of the humoral interface seen at higher magnification inbottom panels.) b identifies a tightly localized B-Prz line identifying a small-molecule transport barrier (green arrow) near the diffusion barrier seen in c (red arrow). On right, a complimentary image shows an PEx8 brain lacking the transport barrier fluorescent signal (e) Localized physiologic properties of the BBB are evaluated by combining fluorescent chemical reporters and the above anatomic methods. Standard confocal samplings methods yield a detailed cross-sectional image of the humoral interface, demon-strating that the barrier is closed to 10 kDa dextrans along the entire periphery of the brain (Fig. 3C). Indeed, these barrier properties correlate well with dextran diffusion experiments at the vascular endothelium of the vertebrate BBB (Ballabh et al.,

2004). Note that some dye is trapped by a more superficial cellular layer known as the perineural glia (PG) (Stork et al., 2008), resulting in a gradient along the brain surface (Fig. 3C, inset). However, whereas the PG is

completely infiltrated with dye, no fluorescent signal transits the SPG cellular barrier layer (Fig. 3C, histogram), identifying the SPG as the tightest diffu- sion barrier at the humoral interface. In situ localization of dextran correlates well with live penetration assays

BBB function (Fig. 1) and fluor content of brains in quantita- tive dissection assays (Fig. 2 D). Together, these data show that the Dm SPG in adults is a CNS ensheathing epithelium distinct from other glial layers with tight-diffusion barrier properties similar to the vascular endothelium.

It is important to note that the vertebrate BBB is complex, comprising multiple cell types (i.e., capillary vascular endothe- lium, pericytes, a basement membrane, and closely associated astrocytic glia) (Abbott, 2005). Furthermore, it participates in numerous cellular physiologies, including hemodynamic neuro- vascular coupling, neuroimmune function, extracellular matrix interactions, neurotransmitter inactivation, and, of course, chemical protection (Zlokovic, 2008). The integration of these physiologies requires a dynamic barrier, because it must respond to changes in metabolic requirements as well as to exogenous threats, such as xenobiotics and infectious agents. Similar to ver- tebrates, the *Dm* BBB has multiple cell types at the CNS/humoral interface. Moving outward from neurons the *Dm* barrier includes two glially derived cell layers (subperineural and perineural) (Fig. 3*C*), an associated immune cell layer and a fat body layer (data not shown). The primary focus of this work is the physiologic similarity of the vascular endothelium in vertebrates and the sub- perineural glia in *Dm*. However, the additional cellular complex- ity of the *Dm* BBB may offer ways to model cellular interactions in regulation and control of BBB physiology, including sensing and responding to the metabolic needs of neurons, immune cell transcytosis, and remodeling after CNS injury. Thus, although the *Dm* BBB is not anatomically superimposable on that of ver- tebrates, this work establishes a framework on which to build an integrated model of BBB physiology and to discover and test regulatory hypotheses of CNS chemical protection.

Mdr65 drug partition function localizes to the CNS/humoral interface

To better understand chemoprotective deficits of *Mdr65* loss-of- function animals, we compared the chemical partition of a num-

Figure 5. Mdr65 localizes specifically to the SPG. A, Confocal microscope cross-sectional images show tangential slices of the hemolymph-brain interface (top panels) taken from animals injected with 3 kDa Cascade blue dextran (CBD) and cyclosporine A (see Materials and Methods). Brains are fixed in situ, dissected, and costained with Moody (green) and C219 (red) antibodies. Thetoppanelshows Moodyand C219 signal tightly and evenly colocalized alongthe brain surface (Merge). This signal is juxtaposed against the humoral interface [i.e., the diffusion barrier (DB)] marked by CBD (blue in Merge + Diffusion Barrier). C219 signal (red) is localized predominantly between the humoral interface (blue) and Moody (green) (high magnification, middle panel and histogram). A surface image (bottom panels) demonstrates different local- ization patterns of Moodyand C219 signal in the plane of the SPG. B, SPG-GAL4 driver (G) (Stork et al., 2008) is crossed to UAS-GFP tagged with a nuclear localization signal [NLS-GFP (Bloom- ington Drosophila Stock Center)]. Brains are stained with Moody or C219 antibody. Cross- sectional images of the humoral interface show Moody stain is basal to SPG nuclei (triangle, left panel), and C219 stain is immediately apical (triangle, right panel). C, UAS-Mdr65-GFP (M) is crossed to the SPG-GAL4 driver (G) and stained with Moody antibody (top) or C219 (bottom). Mdr65-GFP localizes in the humoral facing membrane of the SPG (a, green arrowhead) apical to Moody (b, red arrowhead). Mdr65-GFP and C219 stain completely colocalize (merge, yellow signal) in the apical SPG (bottom panel, a, yellow arrowhead). D, WT and PMdr65 animals are costained with Moody (green) and C219 (red) antibodies. Moody intensity is the same in both lines (bottom panel). Under the identical confocal conditions, C219 staining appears markedly reduced in the PMdr65 line (right middle panel). E, Top, The transgenes SPG-GAL4 (G), UAS- Mdr65-GFP(M), and UAS-Pgp(P) are crossed alone or together (G × MorG × P) into PEx8 or w— WT flies. Brain-specific dye capture at 4 h after injection of 2.5 mg/ml RhoB is shown as mean \pm SEM values (n = 4 - 8 with 3 brains per n; *p < 0.5, **p < 0.01, ***p < 0.001, for two-tailed t test) (WT vs $PEx8/G \times M$, p > 0.001) 0.80; WT vs PEx8/G × P, p > 0.81). F, Confocal image of PEx8/G × M animal brains stained with Moody antibody (red). Mdr65–GFP (green) demonstrates the correct apical localization in the SPG.

ber of fluorescently tagged MDR1/Pgp substrates in w^- WT flies and w^- PEx8 flies using the live retinal assay. PEx8 is a loss-of- function allele of Mdr65 derived from an imprecise excision of PMdr65 (supplemental Fig. S1 A, available at www.jneurosci.org as supplemental material). We found that B-Prz partition was affected by loss of Mdr65 function (data not shown). Coinjection of TRD and B-Prz into w^- WT flies and w^- PEx8 flies confirmed that the loss of Mdr65 function in PEx8 flies leads to increased levels of B-Prz in both the brain and retina but leaves the para- cellular diffusion barrier intact (Fig. 4 A, B). These data are di- rectly visualized in CNS tissue by confocal microscope sections of whole dissected Dm brains. Brains from hemolymph-injected adult animals demonstrate clear penetration of B-Prz throughout the CNS parenchyma in PEx8 animals but tight exclusion from the brains of WT animals (Fig. 4C). A striking feature of these images is the tight juxtaposition of B-Prz signal (green) near the diffusion barrier (red) in WT flies, suggesting that the efflux transport barrier, like the diffusion barrier, is closely localized at the humoral/CNS interface (Fig. 4C, w^- WT, top panels and small panel b). In contrast, the transport barrier is absent in PEx8 flies (Fig. 4C, compare small panels b-e). Thus, brain-specific Mdr65 drug partition function localizes to the humoral interface. Furthermore, the close proximity of the diffusion and transport barriers in the SPG recapitulates the simultaneous manifestation of the diffusion and transport barriers in the vertebrate vascular endothelium (Fig. 1).

Mdr65 is specifically localized in the *Dm* CNS

The distinctive BBB exclusion pattern of B-Prz suggested that Mdr65 transport function is located in the SPG. Indeed, *Mdr65* mRNA is known to be highly expressed in the brain surface glia of *Dm* and regulated by glial-specific transcription factors (Freeman et al., 2003). To ascertain the precise location of endogenous Mdr65, we combined newly identified Mdr65-specific antibody reagents with the above methods for understanding BBB structure and physiology. Thus, we bring together three types of reagents: antibodies that specifically recognize ABC transporters in the cell membrane, enhancer traps specific to the different cellular layers of the *Dm* BBB, and fluorescent dextrans that demonstrate the diffusion constraints of the cellular junctions of the BBB. Together, these tools allowed us to specifically visualize individual cellular layers of the very compact humoral/CNS interface.

To this end, we confirmed that C219, an MDR1/Pgp-directed monoclonal antibody, specifically recognizes Mdr65–GFP by Western analysis of whole fly heads (supplemental Fig. S1C, available at www.jneurosci.org as supplemental material) (Kart- ner et al., 1985; Riordan et al., 1985; Bosch et al., 1996). Cross- sectional images of adult brains costained with Moody and C219 antibodies demonstrate continuous colocalization of Moody and Mdr65 at the periphery of the CNS (Fig. 5A, top row). Higher- resolution images obtained by repeated confocal sampling show that Mdr65 is predominantly apical to Moody all along the SPG/ humoral interface (Fig. 5A, middle row and inset histogram). Brain-surface images reveal different patterns for Moody and Mdr65 in the x-y dimension, suggesting different restricted lo- calizations at the humoral interface (Fig. 5A, bottom). We further refined relative localization of the two signals by labeling SPG nuclei with GFP. Because SPG nuclei are 500 – 800 nm in thick- ness, the distance between the apical and basal membranes of the SPG is increased near the nucleus (Fig. 5B). Under such condi- tions Moody is clearly localized to the basal side of nuclei, whereas Mdr65 resides on the apical side. To determine whether

Mdr65 and Moody are localized to the same cell, we stained ani- mals expressing low levels of SPG-specific Mdr65–GFP with Moody antibodies and found that Mdr65–GFP is apical to Moody with little or no overlap (Fig. 5C, top). When the same animals are stained with C219, the GFP and C219 signals are perfectly coincident, indicating that Mdr65 colocalizes with Mdr65–GFP and therefore resides in the apical interface of the SPG (Fig. 5C, bottom). Finally, C219 staining of WT and *PMdr65* brains demonstrates greatly reduced signal at all localizations along the BBB interface in *PMdr65* animals, confirming that *PMdr65* is a loss-of-function allele of *mdr65* (Fig. 5D, middle).

SPG-specific expression of Mdr65–GFP or human Pgp rescues transport function

To confirm that *Mdr65* loss of function is responsible for functional perturbations in BBB-specific xenobiotic efflux, we showed that expression of Mdr65–GFP in the SPG rescues the RhoB transport phenotype. Targeted gene expression was achieved using an SPG–GAL4 transgene (G) driving the expres- sion of UAS–Mdr65–GFP (M). Brain-specific efflux of RhoB in a WT background is only modestly affected by a single G × M transgene cross (Fig. 5E, column 2). However, the same cross completely restores WT transport function in an *Mdr65* null (*PEx8*) background (Fig. 5E, column 6). Apical SPG localization of Mdr65–GFP was confirmed in rescued animals by confocal microscopy (Fig. 5F). Thus, Mdr65–GFP expression at the hu-moral interface is sufficient to restore efflux transport of small-molecule fluors, indicating that a role of Mdr65 in CNS protection is localized to the SPG. These data suggest that Mdr65 plays a cell-autonomous role in xenobiotic protection at the fly BBB similar to the proposed role of other powerful ABC transporters at the VE of vertebrates (Sarkadi et al., 2006). If so,

then Mdr65 loss of function should be complemented by a similarly function- ing vertebrate gene. We tested this hypothesis by driving the ex- pression of human MDR1/Pgp in the Dm SPG (G) with a UAS- MDR1/Pgp construct (P) and confirmed protein expression in Western blots probed with C219 antibody (supplemental Fig. S1D, available at www.jneurosci.org as supplemental material). G × P animals expressing low levels of MDR1/Pgp in a WT back- ground had no effect on RhoB brain retention (Fig. 5E, column 3). Animals carrying, but not selectively expressing, the P trans- gene in an Mdr65 null (PEx8) background could partially rescue the mutant phenotype, likely secondary to leakiness of the trans- gene construct (Fig. 5E, column 7). However, a G × P transgene cross in the mutant background fully restored WT levels RhoB transport (Fig. 5E, column 8). Thus, evolutionarily distant, but physiologically similar, xenobiotic transporters can promote similar levels of chemical protection function across species.

SPG Mdr65 levels alter BBB susceptibility to cytotoxins Drug transport studies *in vivo* and *in vitro* suggest that ABC trans- porters are modular units and that efflux function is proportional to transporter expression levels (Dohgu et al., 2004; Lo scher and Potschka, 2005a; Bachmeier et al., 2006; Sarkadi et al., 2006). To determine whether similar properties would manifest *in vivo* at the humoral/CNS interface of Dm, we tested the effect of Mdr65– GFP overexpression on RhoB partitioning. Transporter gain-of- function conditions were achieved using double homozygotes of the G and M transgenes ($G \times M/G \times M$) in a WT background. Mdr65–GFP expression is several fold greater than native Mdr65 expression in WT animals (supplemental Fig. S1C, available at www.jneurosci.org as supplemental material), and all Mdr65– GFP transporter localization is at the apical interface of the SPG

(data not shown). Brain-specific RhoB content is significantly decreased in $G \times M/G \times M$ lines relative to WT (Fig. 6 B). Thus, increasing or decreasing the level of ABC transporters in the Dm SPG can alter xenobiotic partition at the humoral/CNS interface in much the same way that changes in MDR1/Pgp expression alters xenobiotic penetration into the cytoplasm of isolated cul- tured cells (Chaudhary and Roninson, 1993).

Pharmacokinetic models predict that altering the level of ABC transporter expression or localization will shift the chemical par- tition of drugs in the BBB-protected space (Schinkel, 1999). Be- cause Mdr65 resides in the apical membrane of the SPG in flies, the cytoplasm of SPG cells is included in the BBB-protected zone, and varying the level of Mdr65 should alter the sensitivity of SPG cells to ABC transportable cytotoxins in a predictable manner. To test this hypothesis, we studied the effect of the anti-microtubule agent vinblastine on SPG cell function. VB was chosen because it is transported by Mdr65 *in vitro* (data not shown). Because break- down of the cytoskeleton affects the integrity of paracellular junctions, SPG cell function can be assayed by monitoring the passage of large MW dextrans from the hemolymph into the CNS. In the absence of VB, the paracellular diffusion barrier is intact, and the 3 kDa FITC– dextran is entirely peripheral to the brain (Fig. 6C or D, and data not shown). When WT animals are coinjected with

3.3 mM VB and FITC- dextran, a small but significant amount of FITC signal leaks into the CNS (Fig. 6C, left). Under the same conditions, Ex8 brains accumulate FITC- dextran internal to the SPG more than WT brains, indicating that mdr65 loss of function increases the sensitivity of SPG cells to VB (Fig. 6C, right, and data not shown). Similar results are obtained when Mdr65 loss of function is directed to the SPG by Mdr65 RNAi (Fig. 2E); thus, cell-autonomous Mdr65 function provides some measure of che- moprotection at the barrier interface (data not shown). We per- formed the same experiment on mdr65 overexpressors using 6.6 mM VB. These animals accumulated significantly lower levels of FITC- dextran than WT (Fig. 6D,G \times M/G \times M). In vivo retinal dye penetration studies corroborated the results obtained above by direct assessment of retinal fluor content (Fig. 6C,D, bottom panels). These results indicate that anatomically selective changes in Mdr65 can lead to altered levels of chemical neuroprotection and suggest that modulation of individual components of the BBB can be exploited to adjust the entry of specific drugs into the brain.

Discussion

The CNS is protected from the influence of the external environ- ment by a blood– brain barrier. This cellular layer uses two properties to promote neuroprotection: a tight diffusion barrier and a complex array of transcellular transporters. Although both properties are essential for proper humoral/CNS separation, little is known about their functional integration and regulation. In the *Drosophila* BBB tissue layer, the SPG, strong diffusion barrier properties had been identified previously, but the nature of its xenobiotic barrier had not been established. In this study, we characterize both physiologic aspects of the adult animal barrier and describe a novel system for the study of brain-specific small- molecule transport physiology. We combine *in vivo* physio- logic assays for drug barrier function and forward genetics to identify Mdr65 as an essential BBB transporter. Mdr65 loss of function leads to increased accumulation of ABC transporter substrates in the brain and increased sensitivity to cytotoxic xenobiotics. These studies suggest functional parallels be- tween Mdr65 and the human MDR1/Pgp transporter and to- gether show strong evolutionary conservation of cell structure

and chemoprotective mechanism in ver- tebrate and invertebrate CNS/humoral interfaces.

Chemical protection of the brain is a complex process involving many overlap- ping physiologic systems and thousands of genes (Abbott, 2005; Sarkadi et al., 2006; Zlokovic, 2008). Although recent ad- vances in genomic and proteomic profil- ing of BBB components promise to pro- vide a detailed description of the molecular players in BBB physiology, un- derstanding how these components act in concert in a given environment remains a difficult problem for vertebrate systems to solve (Calabria and Shusta, 2006). Integra- tive physiology is a discipline that promotes the use of appropriate model organ- isms to test physiologic function of particular genes and interacting genetic systems (Dow, 2007). A powerful ambi- tion of this approach is to find an experi- mental system advantageous for interpre- tation of gene function in different functional contexts (i.e., in the whole ani- mal and/or cell-autonomous/tissue-based circumstances) (Yang et al., 2007). We chose to focus our work in *Drosophila* in which a glial-dependent blood— brain bar- rier chemically insulates an open circula- tory system from the retina, central brain, and peripheral nerves (Carlson et al., 2000; Stork et al., 2008).

Previously, we discovered and began to characterize the BBB-specific function of a *Dm* orphan GPCR, Moody, that localizes with junctional complex components and likely controls diffusion barrier tightness through signals to the actin cytoskeleton (Bainton et al., 2005; Schwabe et al., 2005). The functional association of Moody with cellular junctions demonstrated for the first time the existence of hierarchical control systems designed to direct specific aspects of BBB physiology. Interestingly, varying degrees of hypomorphic mutants in Moody demonstrate a range of pheno

types from subtle behavioral changes (i.e., drug responses) to outright disruption of the diffusion barrier in null animals. Be- cause GPCRs transmit information from external cellular stimuli as varied as photons and hormones, the discovery of Moody sug- gested the possibility that chemoprotective sensors may localize to and provide critical moment to moment evaluation and ad- justment of barrier performance. However, to pursue the control systems of chemical protection physiology, additional molecular and cellular components of the *Dm* CNS xenoprotective interface had to be established (Fig. 1).

ABC transporters control localized pharmacokinetic penetra- tion of drugs and are highly homologous between species; thus, it was logical to pursue their role at the *Dm* BBB. Unfortunately, direct sequence comparisons of human MDR1/Pgp or Mrp1 to *Dm* ABC B and C gene family members, respectively, did not yield any obvious candidates for specific chemoprotective genes (Dean and Annilo, 2005). To unravel neurochemical protective function, we performed a reverse-genetic, physiologically based screen that takes advantage of large collections of preexisting mutants in many *Dm* genes and identified *PMdr65*, a loss-of- function allele of an ABC B transporter (Fig. 2). To confirm the functional relevance of the *PMdr65* mutant to the CNS, we de-vised additional quantitative and *in vivo* drug partition assays that address transporter-specific neuroprotective processes (Figs. 3, 4) and localized Mdr65 expression and function to the apical interface of the *Dm* BBB (Fig. 5). Furthermore, human MDR1/Pgp expressed at the *Dm* BBB could similarly rescue drug transport; thus, MDR1/Pgp can function cell autonomously to protect a CNS interstitial space. These data show that at least one ABC transporter in *Dm* performs BBB-specific duties similar to vertebrate MDR1/Pgp (Schinkel, 1999) and suggests that the unique demands of CNS che-moprotection may select for transporters that are tuned to neural

barrier requirements, although very large evolutionary distances ob-scure the functional relationship of specific genes.

Coincident localization of the diffusion and xenobiotic trans- port barriers (Fig. 4C) demonstrated that the Dm BBB combines vertebrate-like drug exclusion mechanisms to maintain a chem- ical barrier for the brain. This is an ideal setting to test the inter- relationship of chemical protection components at the cellular, organ, and organismal levels (Strange, 2007). For example, in vertebrates, MDR1/Pgp overexpression specifically promotes chemotheraptic drug resistance in cancer cells (Gottesman et al., 2002). Here the quantity of an individual transporter at the cell membrane can alter the localized pharmacokinetics of a toxin by reducing partition into cells through increased efflux. However, at the BBB, the same gene functions in a complex cellular envi- ronment in which xenobiotic protection has the potential to be dependent on not only the content of a single transporter but also celltype-specific expression, spatial localization in a polarized cellular interface, additional transporters, and other localized pharmacokinetic processes such as diffusion barriers and meta-bolic enzymes (Sarkadi et al., 2006; Zlokovic, 2008). A strong drug barrier such as the BBB can only function appropriately when all of these properties are manifested and correctly integrated. In this study, we show that increased quantities of BBBspecific Mdr65 induces CNS-specific superprotection to cyto- toxic substrates (Fig. 6 B). This is dependent on transporter localization, because several biologic tags to Mdr65 that prevent apical membrane association abrogate superprotection and res- cue of xenobiotic sensitivity in Mdr65 nulls while exhibiting oth- erwise normal expression (data not shown). Thus, a single over- expressed transporter can protect both an individual cell and, if properly localized, an entire viscous space such as the CNS from drugs or chemicals. These data support the prevailing paradigm in vertebrate ABC transporter biology that end organ sensitivity must be matched with transporter type, quantity, and discrete localization to promote xenobiotic efflux across cellular inter- faces (Sarkadi et al., 2006).

A great advantage of the *Drosophila* model system is that cell- autonomous gain or loss of function can be tested with anatom- ically directed genetic reagents, an approach that remains a tech- nical challenge in vertebrates. Interestingly, selective, cell-type- specific reduction of Mdr65 in the BBB produces a qualitatively similar xenobiotic phenotype to Mdr65 loss-of-function animals (~1.7:1, mutant to WT) (Fig. 2 *E*); thus, much of the chemopro- tective phenotype of Mdr65 is targeted to the SPG. However, this RNAi-induced chemosensitive phenotype is not as strong as Mdr65 loss of function (2.4:1 mutant to WT) (Fig. 2 *B*), suggest- ing additional roles for Mdr65 in whole animal small-molecule pharmacokinetics. In fact, anatomically specific gene expression profiling demonstrates heightened levels of Mdr65 at other che- moprotective interfaces such as the gut and malphigian tubules (http://www.flyatlas.org/). Thus, like vertebrate MDR1/Pgp, Mdr65 could play a role in broader xenobiotic/drug physiology, suggesting additional evolutionary conservation between the way vertebrates and invertebrates organize and regulate chemical protection biology.

Finding innovative solutions to the drug delivery problems presented by the BBB, and indeed by all biological barriers, is likely to require an integrated understanding of the physiological mechanisms that allow barriers to maintain a balance between metabolic homeostasis and chemical protection. A genetic sys- tem like *Dm* offers the opportunity to use inducible gene reduction systems and thus gain insight into acute responses to drug efflux loss of function, a condition similar to selectively localizing high levels of a transport inhibitor. Ultimately, these methods may be more gainfully applied to multiple, simultaneous gene reductions at the BBB interface. Such epistasis experiments tar- geting multiple localized small-molecule partition components will be a powerful method to uncover subtle interactions between localized pharmacokinetic control systems. With these tools in hand, future work will focus on systematic characterization of transport interfaces, through genomics or proteomics, and anal- ysis of barrier responsiveness to various neurologic insults in-cluding cytotoxic drugs, hypoxia, and metabolic stress.

Recent analyses of vertebrate barrier components point to a large number of biological pathways that may be involved in controlling and integrating the various aspects of barrier function (Enerson and Drewes, 2006; Zlokovic, 2008) (Ben Barres, per-sonal communication). However, establishing the relevance of potential gene candidates is difficult without model systems that allow rapid analysis of proposed pathway function (Dow, 2007; Yang et al., 2007). We present a framework for using reverse genetics to build an integrated model of BBB physiology and to discover and test regulatory hypotheses of CNS chemoprotection. In addition, this system has shown that simple genetic screens for breakdown of BBB function can identify new and unrecognized genes, like Moody, that are part of the regulatory hierarchy of neuroprotection hinting at modulatable control systems in vertebrate chemoprotection. Indeed, ongoing forward genetic screens have also identified mutants in several Dm genes that are highly homologous to relevant vertebrate BBB genes in-volved in signaling, stress sensing, and establishing and maintain- ing the structure of the BBB (data not shown). Thus, BBB-specific genes and processes found in model organisms, particularly Dro-sophila, could lead to novel insights into the organization and cellular separation of the multiple protective BBB physiologies. These considerations, we believe, make our model system remarkably useful in terms of understanding how ancient and re-silient organisms, such as the fruit fly, protect their CNS. Last, this approach may promote the identification of common, conserved regulatory pathways that contribute to chemical protection biol- ogy and BBB physiology across species.

References

Evolution, differentiation, and modulation: dynamics of central nervous system barriers (Abbott NJ, 2005). Neurobiology of the Cell 25:5-23.

In 2006, Bachmeier, Trickler, and Miller were the authors. Drug efflux transport kinetics compared across several models of the blood-brain barrier. Medicines Metab Disposal 34: 998-1003.

According to Bainton RJ, Tsai LT, Schwabe T, DeSalvo M, Gaul U, and Heberlein U (2005), the moody gene produces two GPCRs that control how Drosophila respond to cocaine and how permeable the blood-brain barrier is. Chapter 123:145–156 of Cell.

Nedergaard M., Ballabh P., and Braun A. (2004) A review of the anatomy, regulation, and therapeutic consequences of the blood-brain barrier. The Neurobiology of Diseases Journal, Section 16, Pages 1–13. Bhat MA, Banerjee S, Sousa AD (2006) Septate junction organization and function: an evolutionary viewpoint. Journal of Cell Biology, Biochemistry, and Physics, 46:65–77. The authors of the 2008 study are Banerjee, Mayer, Bainton, Beckstead, and Bhat. The integrity of the ommatidial membrane and the proper functioning of the blood-eye barrier in fruit flies depend on septate junctions. Life Sciences 317:

585-599.

A study conducted by Bosch, Jackson, Croop, and Cantiello in 1996 The activity of ATP channels is linked to the expression of P-glycoproteins in Drosophila melanogaster. Publication: American Journal of Physiology, Volume 271, Sections 1527–1538.

Perrimon N. and Brand AH (1993) Directed gene expression to alter cell fates and produce dominant phenotypes. Pages 401–415 in Development 118.

Calabria AR, Shusta EV (2006) Genomic and proteomic studies of the blood-brain barrier: a key to understanding illness targets, understanding phenotype, and developing effective methods for therapeutic administration to the brain. Current Medications, 2011; 11:792-799.

In 2000, Carlson SD, Juang JL, Hilgers SL, and Garment MB had a study. Insect blood barriers. The published version of this article is Annu Rev Entomol 45:154–174.

Ronaldson IB and Chaudhary PM (1993) Creating human cells resistant to many chemotherapeutic medicines in a short amount of time. Publication: Journal of the National Cancer Institute, 85:632-639.

Barres BA, Daneman R (2005) Intracranial pressure; insights from fickle fruit flies. Pages 9–12.

In 2005, Dean and Annilo The development of vertebrates' ABC transporter superfamily. Annual Review of Genetics and Human Genome 6:123-142.

In 2001, Dean, Rzhetsky, and Allikmets Superfamily of ATP-binding cassette transporters in humans. Chapters 1156–1166 of Genome Research.

Averill-Bates D, Beaulieu E, Murphy GF, Be'liveau R, Demeule M, Vachon V, Delisle MC, 1995 In vivo surface plasmon resonance molecular modeling of P-glycoprotein resistance to many drugs. Article published in Anal Biochem 230: 239 -247.

In 2007, Dietzl et al. collaborated with Chen, Schnorrer, Su, Barinova, Fellner, Gasser, Kinsey, Oppel, Scheiblauer, Couto, Marra, Keleman, and Dickson. Gene inactivation conditional library in Drosophila: a genome-wide transgenic RNAi collection. Article citation: Nature 448:151-156.

In 2004, the following authors were involved: Dohgu, Yamauchi, Takata, Naito, Tsuruo, Higuchi, Sawada, and Kataoka. In microvascular endothelial cells in the brain, transforming growth factor-beta1 increases the expression of P-glycoprotein and tight junction. Neurobiology of the Cell 24: 491–497.

A handbook for comparative physiologists: integrative physiology, functional genomics, and the phenotype gap (Dow JA, 2007). Publication: Journal of Experimental Biology, Volume 210, Pages 1632–1640. John S. Edwards, Lisa S. Swales, and Michael Bate (1993) Observations on the neural lamella and perineurial sheath cells in a mesodermless mutant of Drosophila provide new light on the process of neuroglia and connective tissue sheath development in insect ganglia. Current Opinion in Clinical Neurology 333:301-308.

The transcriptome of the blood-brain barrier in rats was studied by Enerson and Drewes in 2006.

Metabolic and vascular disease of the cerebrospinal fluid 26: 959–973.

Gcm target genes controlling glial growth, diversity, and function: unwrapping glial biology (Freeman MR, Delrow J, Kim J, Johnson E, Doe CQ, 2003). "Neurons" published in volume 38, pages 567–580.

An in vitro model of the blood-brain barrier was developed by Garberg et al. (2005) using data from a variety of sources, including Ball, Borg, Cecchelli, Hurst, Lindmark, Mabondzo, Nilsson, Raub, Stanimirovic, Terasaki, Oberg, and Osterberg. In Vitro Toxicol 19: 299–334.

A study conducted by Gerrard, Stewart, and Dean (1993) examined Mdr50, a homolog of the multidrug resistance gene in Drosophila, a P-glycoprotein. Genomic Research 17:83–88.

"Multidrug resistance in cancer: role of ATP-dependent transporters" (2002, Gottesman MM, Fojo T, Bates SE). Natural Reviews Cancer 2:48–58.

In 1985, Kartner, Evernden-Porelle, Bradley, and Ling performed research. In vitro P-glycoprotein detection using monoclonal antibodies in MDR cell lines. Nature 316: 820–823.

The role of drug efflux transporters in the brain for drug disposal and therapy of brain illnesses was discussed by Lo¨scher and Potschka (2005a). Journal of Neurobiology 76:22–76.

As of 2005b, Lo"scher and Potschka were A family of genes that bind to ATP and are involved in active

efflux transport across the blood-brain barrier. Neurology Research, 2(1), 86–98.

In 2003, Nag S. The barrier that prevents blood from entering the brain. Humana, Totowa, NJ.-based. "Strategies to advance translational research into brain barriers" was published in 2008 by Neuwelt et al. and authored by Abbott, Abrey, Banks, Blakley, Davis, Engelhardt, Grammas, Nedergaard, Nutt, Pardridge, Rosenberg, Smith, and Drewes. Neurology (Lancet) 7:84–96.

Japanese researchers Nitta, Hata, Gotoh, Seo, Sasaki, Hashimoto, Furuse, and Tsukita (2003) Loss of the blood-brain barrier in claudin-5-deficient mice that is size-specific. The citation is printed as J Cell Biol 161:653–660.

The blood-brain barrier: a stumbling block to developing drugs for the brain (Pardridge WM, 2005a). Journal of Neurology, 2(1), 3–14.

In a 2005 publication, Pardridge WM Neurobiology of the blood-brain barrier using molecular means. Molecular Biotechnology, 30, 57–70.

In 2005, Pereanu, Shy, and Hartenstein published it. Brain glia morphogenesis and proliferation in fruit fly larvae. Research in Molecular Biology 283: 191–203.

Those authors were Riordan, Deuchars, Kartner, Alon, Trent, and Ling in 1985. Polymerase chain reaction (PCR) amplification in MDR mammalian cell lines. Volume 316, pages 817–819.

In 2006, Sarkadi et al. conducted research on human ABCB and ABCG transporters and their role in the immune system's protection against several drugs. Physiological Review 86: 1179 -1236.

The physiological role of P-glycoproteins that carry drugs (Schinkel AH, 1997). The article was published in Semin Cancer Biol 8:161-170.

The blood-brain barrier's gatekeeper, P-Glycoprotein, was discussed by Schinkel AH (1999). Advanced Drug Delivery Reviews 36:179–194.

The authors of the 1997 study are Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ, van der Valk MA, Voordouw AC, Spits H, van Tellingen O, Zijlmans JM, Fibbe WE, and Borst P. Normal viability and altered pharmacokinetics in mdrl-type (drug-transporting) P-glycoprotein-deficient mice. Paper published in the Proceedings of the National Academy of Sciences (USA) 94:4028–4033.

According to Schwabe et al. (2005), GPCR signaling is essential for the development of the blood-brain barrier in fruit fly larvae. The article is published in Cell 123:133–144.

The authors of the 2008 publication are Stork, Engelen, Krudewig, Silies, Bainton, and Kla¨mbt. Diagrammatic representation and operational description of the Drosophila blood-brain barrier. The Journal of Neuroscience, volume 28, pages 587–597, 2011.

Caenorhabditis elegans as a model organism for integrative physiology research: revisiting the Krogh Principle in the post-genome age (Strange, 2007). Proceedings of the Royal Society of Chemistry, Volume 210, Pages 1622–1631.

This sentence is paraphrased from Sullivan et al. (2000). Guidelines for drosophila study. Research conducted at the Cold Spring Harbor Laboratory in New York State.

Cellular connection formation in developing Drosophila embryos (Tepass & Hartenstein, 1994). In: Dev Biol 161:563-596.

The blood-brain barrier in insects, by Treherne JE and Pichon Y (1972). Antibody C219 identifies an alpha-helical epitope on P-glycoprotein; van Den Elsen JM, Kuntz DA, Hoedemaeker FJ, and Rose DR (1999). London: Academic. The published version of this work is Proc Natl Acad Sci U S A 96:13679–13684.

In 1991, Wu et al. published a study. Multiple drug resistance gene homologs in fruit fly flies: isolation and characterization. Published in the journal Mol Cell Biol, volume 11, pages 3940–3948.

In 2004, Wu VM and Beitel GJ An issue of apical proportions at the junction: septate junctions regulate the size of epithelial tubes in the tracheal system of Drosophila. Current Opinion in Cell Biology 16:493-499.

Dow JA, ffrench-Constant RH, Yang J, Terhzaz S, Greenwood KG, Woods DJ, McCart C (2007) Exploring xenobiotic metabolism in Drosophila systems. The output for this research is Physiol Genomics, volume 30, pages 223-231.

APPLIED SCIENCE LETTER

Vol. 5, No.4, Oct (2023), pp.04-22

As of 2008, Zlokovic BV claimed The blood-brain barrier in normal functioning and in diseases characterized by persistent neurodegeneration. "Neurons" (57:178–201).